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Abstract—A novel enhanced Hammerstein behavior model
consisting of a weighted memoryless polynomial followed by a
Volterra filter is proposed. The weighted polynomial is used for
predicting the strong static nonlinear behaviors of the power
amplifiers (PAs). Since the Volterra filter is employed only for
the mild dynamic nonlinearities, the filter can be implemented
with low nonlinear order. Thus, this proposed model is capable of
predicting both the static and dynamic nonlinearities of RF PAs
with the acceptable complexity. The modeling performance of the
proposed model is assessed in terms of in-band and out-of-band
errors, such as normalized mean square error and adjacent
channel error power ratio, and it is compared with a conventional
Hammerstein, an augmented Hammerstein, and a Volterra series
with respect to computation complexities such as the number of
floating point operations and coefficients. The excellent estimation
capability of the enhanced Hammerstein model is validated by two
kinds of PAs: Si lateral diffusion metal–oxide–semiconductor and
GaN high electron-mobility transistor amplifiers. Furthermore,
the proposed scheme is applied to the digital predistortion (DPD)
to cancel the nonlinearities of the PAs. The modeling performances
and DPD experimental results clearly demonstrate the superi-
ority of the enhanced Hammerstein scheme: the computational
complexity is comparable with the augmented Hammerstein
behavioral model, but the modeling performance is similar to the
Volterra filter, which is the most accurate model.

Index Terms—Behavior modeling, Hammerstein, memory
effect, power amplifier (PA), PA nonlinearity, two-box model,
Volterra series, wideband behavioral model.

I. INTRODUCTION

T HE POWER amplifier (PA) is an essential element in
current wireless communication systems. However, it is

inherently a nonlinear component. The nonlinearity induces
in-band and out-of-band error distortions that cause adjacent
channel interference and degradation of bit-error-rate perfor-
mance. Thus, to meet the linearity requirements mandated by
regulatory agencies, it is necessary to compensate for the non-
linear characteristics of the PA. Traditionally, PAs were driven
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into the back-off power region, required more than peak-to-av-
erage power ratio (PAPR), to operate within the linear region.
However, modern communication systems, such as wideband
code-division multiple access (WCDMA) and world interoper-
ability for microwave access (WiMAX), use spectrally efficient
modulation schemes to transmit large quantities of information
within a limited band. As a result, the signals of the systems
vary rapidly and have a large PAPR. Thus, the PA should be
operated at a power level far from its saturation point, where
the dc-to-RF conversion efficiency is poor. To improve the
efficiency without compromising linearity, the PA linearization
technique is indispensable [1]–[5].

The feedforward linearization technique provides extremely
linear and broadband characteristics [6], [7]. However, it is an
expensive method, consisting of an auxiliary error amplifier and
complicated control circuits. Moreover, due to the error ampli-
fier, the overall efficiency of the system is poor. On the other
hand, feedback linearization has the disadvantages of instability
and bandwidth limitation [8], [9]. An analog predistortion (PD)
is preferred due to its simple structure and low cost [10], [11].
Nevertheless, the linearization performance for a wideband
signal is restricted. Among all linearization techniques, digital
predistortion (DPD) is the most promising technique because
of its high accuracy, energy-efficient operation, and flexibility;
Therefore, it is widely employed [12]–[57].

The key element of the DPD is an extra nonlinear function be-
fore the PA to preprocess input signal of the PA; as a result, the
overall cascaded system DPD PA linearly amplifies signals.
To determine the nonlinear function, a behavioral model and
inverse model of PAs are needed in the DPD system. In addi-
tion, the behavioral model for the PA provides a convenient and
efficient means to estimate system-level performance without
the computational complexity of circuit-level simulation or
physical nonlinear-circuit analysis, which speeds up the system
design and verification process. Currently, many types of be-
havior modeling methods for memory or memoryless PAs have
been proposed and evaluated. For example, the Saleh model
[17], Volterra-based models [18]–[30], Wiener-based model
[30]–[33], Hammerstein-based model [34]–[36], memory
polynomial model [37]–[39], and neural network-based model
[40]–[44]. In addition, overview and comparative analysis of
the various models have been presented [45]–[47].

As radio systems evolve to use wider bandwidth signals, we
have to account for not only static nonlinearities defined by am-
plitude modulation/amplitude modulation (AM/AM) and am-
plitude modulation/phase modulation (AM/PM), but also the
memory effects to accurately model the PA. Memory effects
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Fig. 1. Block diagrams of: (a) Enhanced Hammerstein behavior model and
(b) weighted polynomial.

can generally be categorized as: 1) linear memory effects that
arise from time delays or phase shifts in the PA matching cir-
cuitry and the device elements used and 2) dynamic memory ef-
fects caused by trapping effects and nonideal bias circuits [27],
[48]. Several PA behavior model topologies, which are intended
to describe the static nonlinearities and memory effects, have
been reported in the literature. A Volterra series provides a gen-
eral way to accurately model a dynamic nonlinear system by
including all possible nonlinear components. However, since
both the nonlinearity and memory effect are estimated simul-
taneously in the Volterra model, the number of the coefficients
to be extracted increases rapidly with respect to degree of the
nonlinearity and memory length of the system, which increases
the complexity. Therefore, this model is useful for a system
with a moderate degree of nonlinearity. To overcome the com-
putational complexity of the Volterra series, Volterra-like ap-
proaches have been proposed [21]–[27]. For example, the dy-
namic deviation reduction-based Volterra series [27] reduces
the number of coefficients by removing high-order dynamics
in the classical Volterra series. However, in this Volterra series,
highly nonlinear static and mildly nonlinear dynamics are iden-
tified in a single step. Thus, the generated Vandermonde ma-
trix, which is employed in the identification process, is large,
and solving the matrix is very complex [49], [50]. The memory
polynomial in which all off-diagonal coefficients of the Volterra
kernel are set to zero is widely used to model the PAs. How-
ever, this method often results in an oversized model due to the
use of a constant nonlinear degree in all branches. Moreover,
lack of the cross-term in this model limits the modeling accu-
racy. Two-box models, generally known as Wiener and Ham-
merstein models, employ a cascade of a nonlinear function and
a linear filter to model the dynamic systems. These models do
not consider the nonlinear behavior of the memory effect and
cross-term, which limits the modeling performance. To alle-
viate the drawbacks of the conventional Wiener and Hammer-
stein structures, a weakly nonlinear block with multiple filters
is employed as the memory subsystem in the augmented ver-
sions of these models [33], [36]. The twin nonlinear two-box

(TNTB) models [50], in which the lookup table and memory
polynomial function are placed in forward, reverse, and parallel
ways, are proposed to represent the memory effect with strong
static nonlinearity. In these TNTB models, the parameter iden-
tifications for both highly nonlinear static and the mildly non-
linear dynamic behavior are separately carried out. However,
these models do not include the cross-term.

The behavioral models are usually compared using the
number of coefficients, which determines the memory size
needed for computation. However, this comparison may not
always be the proper method. For example, in a neural network,
the number of parameters may not accurately represent the
computational complexity. Additionally, a simple approach
to measure the complexity is to record the running time of
the different models. However, this measure depends on the
hardware setup. Recently, to fairly compare the models, Tehrani
et al. [47] employs the number of floating point operations
(FLOPs) for measuring the complexity. The computational
effort mainly depends on the number of additions, subtractions,
and multiplications in the field-programmable gate array or
digital signal processing rather than the number of coefficients.

In this paper, an enhanced Hammerstein behavior model con-
sisting of a cascade of a memoryless weighted polynomial, pro-
posed in [51], followed by a Volterra series is investigated to
separately model the mildly nonlinear memory effect, as well
as the strongly static nonlinearity. By applying the weighting
function, which includes the effect for the errors during the coef-
ficient identification for the static nonlinear behavior due to the
statistic distribution of the commonly used signal of the wire-
less communication system and high level of generation at the
high power level, the weighted memoryless polynomial reduces
the modeling error. Since a Volterra filter in the enhanced Ham-
merstein model is employed only for predicting the nonlinear
memory effect with a mild degree of nonlinearity, the compu-
tation complexity can be reduced in comparison with the con-
ventional Volterra series, in which the both strongly static and
mildly dynamic nonlinear behavior of the PAs are modeled at
once. However, in spite of the Volterra series with a low degree
of nonlinearity, performance of the proposed model is similar
to that of the conventional Volterra series. The proposed model
is compared with the Hammerstein-based models, such as con-
ventional and augmented Hammerstein structures, and Volterra
series in terms of normalized mean square error (NMSE) and
adjacent channel error power ratio (ACEPR) as a function of
the number of total coefficients and FLOPs. Additionally, the
enhanced Hammerstein predistorter constructed by the indirect
learning architecture is designed to validate the effectiveness of
such a predistorter. The linearization performance of this predis-
torter is compared with the augmented Hammerstein architec-
ture. The modeling and linearization performances clearly show
that the proposed model provides excellent results.

This paper is organized as follows. First, the proposed model
is described in Section II. The modeling performance is then
assessed in Section III. In Section IV, the experimental results
of a baseband digital predistorter based on the proposed models
are presented. Finally, conclusions are presented in Section V.
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II. ENHANCED HAMMERSTEIN BEHAVIORAL MODEL

The enhanced Hammerstein behavioral model, illustrated
in Fig. 1(a), consists of a memoryless sub-block followed by
a dynamic nonlinear system. To model the static nonlinear
behaviors of the PAs, such as AM/AM and AM/PM, the mem-
oryless weighted polynomial model, which is proposed and
well described in [51], is employed, as shown in Fig. 1(b). This
model consists of weighting, polynomial to the error signal,
and de-weighting parts. By applying the weighting function,
presenting the statistical distribution of the signal and empha-
sizing the high power level, this polynomial delivers higher
modeling accuracy than the conventional polynomial.

To predict the mildly dynamic memory effects of the PAs,
a Volterra filter is adopted. In general, a discrete time-domain
finite-memory complex baseband Volterra model is given by

(1)

where

for

for odd.

(2)
and are input and output of the Volterra filter, respec-

tively. represents the memory depth of the corresponding
nonlinearity, is the th-order Volterra kernel,
and is the nonlinear degree of this model. In this study, we
have considered only the second-order cross terms, i.e., the
products with two different time delays. Moreover, even-order
terms are included to enrich the basis set and improve the
modeling accuracy and DPD performance [52]. With the above
considerations, the Volterra model is approximated by a sim-
plified model, described in [28], given by

for

for

(3)

In the remainder of this paper, we use the Volterra series in (3)
not only for the validation of the enhanced Hammerstein model,
but also for that of the Volterra model instead of the classical
version.

Since the Volterra model in the enhanced Hammerstein be-
havior model is used only for estimating the mildly nonlinear
behavior of memory effects, the nonlinear degree of the model
can be significantly reduced in comparison with the model used
for predicting both static and dynamic nonlinearities. Thus, the
total number of the coefficients and computational complexity

Fig. 2. Experimental setup used to evaluate the behavioral model and DPD.

are reduced. Since this model uses the dynamic nonlinearity
with a high order to predict the nonlinear memory effects, it
can deliver better modeling performance than the conventional
Hammerstein structure with a linear filter expressed as

(4)

The augmented Hammerstein and TNTB models alleviate the
drawback of the conventional Hammerstein by employing the
nonlinearity of the memory effect, given by

(5)

(6)

Equations (5) and (6) denote the memory subsystems for the
augmented Hammerstein and TNTB, respectively. However, the
cross-terms between the previous input signals are not included
in the memory-effect model, which limits the modeling accu-
racy.

The identification procedure employed in the proposed
model consists of two steps. Initially, the static nonlinear
behavior is extracted by the memoryless weighted polynomial.
The dynamic nonlinearity of the PAs is then de-embedded
from the data of the amplifier output. Next, the coefficients of
the Volterra filter are identified. This separated identification
procedure reduces the size of the Vandermonde matrix com-
pared to the dynamic deviation reduction-based Volterra series.
However, compared to an unique identification, a two-step
identification is less stable for the local minimum problem.
Thus, during the identification phase, a careful adaptation is
required.

In short, the enhanced Hammerstein structure consists of a
weighted memoryless polynomial to model the high-order static
nonlinearity and the Volterra filter to predict the relatively small
nonlinear-memory effect. Therefore, the number of coefficients
and FLOPs can be reduced compared to the Volterra approach
in which both the static and dynamic nonlinearities are modeled
simultaneously. Compared to the conventional Hammerstein,
conventional Wiener with the separated identification, their aug-
mented versions, and TNTB models, the modeling performance
is improved by including the cross-terms to accurately model the
memory effect.
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Fig. 3. Case-I: Class-AB amplifier using Si LDMOSFET at an average output power back-off of 8 dB. (a) NMSE values according to the total number of coeffi-
cients. (b) NMSE and (c) ACEPR according to FLOPs.

Fig. 4. Case-I: Class-AB amplifier using Si LDMOSFET at an average output power back-off of 8 dB. (a) NMSE and (b) ACEPR comparisons between enhanced
Hammerstein and Volterra models according to the total number of FLOPs.

III. ENHANCED HAMMERSTEIN MODEL VALIDATION

The ability of the enhanced Hammerstein model to predict
the responses of PAs is compared with the conventional Ham-
merstein, augmented Hammerstein, and Volterra series. The
Volterra series used for the comparison is the same form in the
enhanced Hammerstein, as described in (1) and (3). All models
considered in this section include even- as well as odd-degree
nonlinearities to increase modeling accuracy [52].

A. Measurement Setup

The experimental setup used to evaluate the behavior model
and DPD is shown in Fig. 2. An Agilent E4438C electronic
signal generator (ESG) was used as the modulator, and a 89600
vector signal analyzer (VSA) was used as a demodulator. The
baseband in-phase/quadrature (I/Q) data were generated in a
computer and downloaded to ESG; the data were modulated to
an RF carrier. The resulting signal was fed to the PA. The output
signal of the PA was then captured by the E4440A PSA, and the
output I/Q data were collected by the VSA [53]. The behavioral
model and its inversion were carried out by MATLAB.

For comprehensive validation, performances of the enhanced
Hammerstein and other models are evaluated in two kinds of
Class-AB amplifiers. The first Class-AB PA is implemented
using 140-W Si lateral diffusion metal–oxide–semiconductor
(LDMOSFET) at 2.345 GHz, and the second one is designed
using 120-W GaN high electron-mobility transistor (HEMT) at
2.655 GHz. For the LDMOSFET amplifier, a WCDMDA two
frequency assignment (2FA) signal with a carrier spacing of

10 MHz is applied. The signal has a PAPR of 8 dB and a band-
width of 15 MHz. The output I/Q data of the amplifier is col-
lected at the different output power levels: 8- and 6-dB back-off
power conditions from the maximum output power. For the GaN
HEMT amplifier, a WiMAX 2FA signal with a PAPR of 8 dB
and a bandwidth of 20 MHz is used, and the output I/Q signal
is gathered at the 8-dB back-off power level. For clarity, the ex-
perimental conditions are listed as follows.

• Case-I: Class-AB PA using Si LDMOSFET at an average
output power back-off of 8 dB.

• Case-II: Class-AB PA using GaN HEMT at an average
output power back-off of 8 dB.

• Case-III: Class-AB PA using Si LDMOSFET at an av-
erage output power back-off of 6 dB.

B. Model Evaluation Metrics

Many performance measures to validate behavioral models
have been reported, e.g., NMSE [18], root mean square error
[54], ACEPR [55], memory effect ratio, memory effect mod-
eling ratio [56], and memory effect intensity [57]. Among them,
the NMSE is adopted as the in-band model measure in this study
[47], which is defined as

(7)

where and denote the measured and modeled signals, re-
spectively, and is the total number of samples used to validate
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Fig. 5. Case-II: Class-AB amplifier using GaN HEMT at an average output power back-off of 8 dB. (a) NMSE values according to the total number of coefficients.
(b) NMSE and (c) ACEPR according to FLOPs.

Fig. 6. Case-II: Class-AB amplifier using GaN HEMT at an average output power back-off of 8 dB. (a) NMSE and (b) ACEPR comparison between enhanced
Hammerstein and Volterra models according to the total number of FLOPs.

Fig. 7. Case-III: Class-AB amplifier using Si LDMOSFET at an average output power back-off of 6 dB. (a) NMSE values according to the total number of
coefficients. (b) NMSE and (c) ACEPR according to FLOPs.

the models. To assess the out-of-band modeling capability, the
ACEPR is used and defined as

(8)

where and are Fourier transforms of the measured and
modeled data, respectively. The integration in the denominator
is over the in-band channel, and the integration in the numerator
is from the adjacent channels to the signal channel with the same
bandwidth for the lower and upper adjacent
channels.

C. Results

The modeling performances of the conventional Hammer-
stein, augmented Hammerstein, enhanced Hammerstein, and

Volterra models are assessed in terms of NMSE and ACEPR ac-
cording to the computational complexity. In order to represent
the static nonlinear behaviors of the conventional, augmented,
and enhanced Hammerstein models, the memoryless poly-
nomials are employed. For Case-I, Case-II, and Case-III,
the polynomial orders are set to 7, 5, and 7, respectively. The
memory depth of the conventional Hammerstein is changed
from 3 to 100. For the augmented case, and are swept
from 3 to 50, respectively. In the enhanced Hammerstein, the
nonlinear degree and memory depth of the Volterra series
are varied from 2 to 5 and 3 to 13, respectively. For the Volterra
series, it predicts the dynamics, as well as static nonlinear
behavior at once. Thus, its polynomial order is swept from 3 to
9, and memory depth is changed from 3 to 13. When calculating
these metrics, 20 000 input and output I/Q samples for both the
WCDMA 2FA and WiMAX 2FA signals are employed. For the
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Fig. 8. Case-III: Class-AB amplifier using Si LDMOSFET at an average output power back-off of 6 dB. (a) NMSE and (b) ACEPR comparison between enhanced
Hammerstein and Volterra models according to the total number of FLOPs.

complexity measure, the number of FLOPs is employed, and
the total number of FLOPs is calculated using (1) and (3)–(5)
[47].

1) Case-I: Figs. 3 and 4 show comparisons of the NMSE
and ACEPR for the behavioral models with respect to the total
number of coefficients and FLOPs. In Fig. 3, the modeling per-
formances of the proposed model are compared with those of
Hammerstein and its augmented version. The performance of
the Volterra series is also evaluated and depicted in Fig. 4. “P”
in the legends for the enhanced Hammerstein and Volterra se-
ries denotes the nonlinear degree of the Volterra series. From
Fig. 3, it can be seen that as the calculation resources, such
as the total number of coefficients and FLOPs, increase, the
NMSE and ACEPR performances improve. However, the min-
imum levels of the models are limited for each algorithm used.
For the Hammerstein model, the NMSE and ACEPR are lim-
ited to 37.4 and 42.9 dB, respectively, because this algo-
rithm employs only a linear filter to model the memory effect.
On the other hand, the augmented Hammerstein gives better
performances than the classical Hammerstein. The minimum
NMSE and ACEPR of the augmented Hammerstein are 41.7
and 49.4 dB, respectively, because the augmented Hammer-
stein includes the second-degree nonlinear characteristic of the
memory effect. For the enhanced Hammerstein with a nonlinear
degree of 2, which is the same degree of the augmented Ham-
merstein case, the performances are further improved over the
Hammerstein models. The minimum NMSE and ACEPR of the
enhanced Hammerstein are 44.9 and 52.6 dB, respectively.
This result indicates that the cross-term is important to charac-
terize the memory effect. The proposed model converges accu-
rately, providing better accuracy than other models with fewer
than 500 FLOPs.

The enhanced Hammerstein and the Volterra series have
been compared extensively, as shown in Fig. 4. Unlike the
Volterra series, in which the memoryless nonlinearity and
memory effect are predicted at once, the proposed model
delivers better in-band and out-of-band modeling performances
with a low nonlinear degree because the static and dynamic
nonlinear behaviors of the PAs are estimated independently.
For both behavioral models, the lowest NMSE and ACEPR are
similar when the number of coefficients and FLOPs are large.
However, at a finite complexity, the proposed model delivers
lower NMSE error than that of the Volterra filter.

Fig. 9. Measured: (a) IMD3 and (b) IMD5 characteristics.

2) Case-II: In this case, we explore the nonlinear behavior
of the Class-AB PA using GaN HEMT with a signal band-
width of 20 MHz. Fig. 5 shows the modeling performances
for the Hammerstein, augmented Hammerstein, and enhanced
Hammerstein. Although the enhanced Hammerstein model
outperforms the others, the performance differences of all
models are relatively small because the GaN HEMT gener-
ates less memory effect than Si LDMOSFET because of the
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Fig. 10. Offline training scheme for enhanced Hammerstein predistorter iden-
tification.

large impedance level. Therefore, the models do not show
any significant improvement from the static nonlinear model,
which delivers 31.8 dB of NMSE. In Fig. 6, the enhanced
Hammerstein and Volterra series are compared with respect to
the number of FLOPs. Unlike Case-I, there is no significant
improvement as the polynomial order increases, which indi-
cates that the nonlinear degree of the memory effect is mild
for the GaN HEMT. These evaluations show again that the
proposed behavioral modeling has the outstanding capability to
predict PA behavior that exhibits the memory effect regardless
of device and signal bandwidth.

3) Case-III: The Class-AB PA used in Case-I is driven harder
in this case, and the PA has more static and dynamic nonlinear
characteristics. Thus, compared with Case-I, the modeling ac-
curacy is slightly degraded. In Figs. 7 and 8, the modeling per-
formances are compared with respect to the number of coeffi-
cients and FLOPs. Similar to the previous cases, the enhanced
Hammerstein model delivers the lowest modeling error among
NMSE and ACEPR, as shown in Fig. 7. Moreover, the amount
of improvement between the augmented and enhanced Ham-
merstein models is increased in comparison with Case-I, which
proves that the proposed model can predict the memory effect
with complex behavior. In Fig. 8, the modeling performances
of the Volterra series are compared with those of the proposed
model. Due to the harder saturation characteristic than Case-I,
the amount of improvement for NMSE is slightly increased from
1.8 to 2.6 dB when the polynomial order of the Volterra filter in
the enhanced Hammerstein is increased from 2 to 3. Similarly to
Case-I, the lowest NMSE and ACEPR values of both enhanced
Hammerstein and Volterra models are nearly the same. How-
ever, at a finite complexity, the proposed model provides lower
NMSE error than that of the Volterra model, but ACEPR perfor-
mances for both models are similar.

4) Discussion: The modeling performances of the Hammer-
stein-kind models are compared, and the proposed enhanced
Hammerstein model has the best performance, which is similar
to that of the Volterra series. If infinite resources are given, the
proposed model can achieve the best in-band and out-of-band
modeling performance compared to the Hammerstein kinds of

Fig. 11. ACLR comparisons of the transmitter with different parameters for
WCDMA 4FA signal. (a) Augmented Hammerstein with two different delay-tap
FIR filters. (b) Enhanced Hammerstein with the various polynomial orders and
delay-tap.

Fig. 12. ACLRs of the augmented and enhanced Hammerstein predistorters
according to the number of FLOPs.

models for various PAs and saturation levels. With lower com-
putational complexity, such as fewer coefficients and FLOPs,
the enhanced Hammerstein can provide similar performance to
the Volterra series.
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TABLE I
SUMMARY OF THE DPD LINEARIZATION RESULTS AT AN AVERAGE OUTPUT POWER OF 42 dBm

IV. DPD LINEARIZATION

A. PA Characteristics

The proposed enhanced Hammerstein behavioral model is ap-
plied to the DPD architecture for the pre-compensation of non-
linear distortions and memory effects in an RF PA and trans-
mitter. To validate effectiveness of this predistorter, we built a
Class-AB PA using the Freescale MRF6S21100 LDMOSFET
with 100-W PEP at 2.14 GHz. The biases of the PA were set to

V and mA. The PA has an efficiency of
48.5% and a power gain of 11.5 dB at of 49.8 dBm. The
implemented PA is not the same amplifier used in Section III,
which verifies that the proposed model can be applied to any
kinds of amplifiers.

Before applying the PD algorithm, we have explored the non-
linear characteristics and memory effects using two-tone sig-
nals up to 20-MHz tone spacing. Fig. 9 shows the third-order
intermodulation distortion (IMD3) and fifth-order intermodula-
tion distortion (IMD5) for the two-tone signal. This amplifier
has serious high-order memory effects, as can be seen from the
differences between the upper and lower sidebands of IMD3
(greater than 6-dB difference at average output powers from 40
to 46 dBm). Unlike the IMD3 characteristics, there are no signif-
icant asymmetries in the IMD5s, which means that the amplifier
generates a serious memory effect near the signal band.

B. Results

To validate the proposed DPD algorithm to linearize a wide-
band signal, a 2.14-GHz forward-link WCDMA 4FA signal is
employed. This signal has a PAPR of 7.1 dB and a sampling rate
of 92.16 million samples per second. An indirect learning archi-
tecture is employed to adjust the coefficients of the enhanced
Hammerstein predistorter, as shown in Fig. 10. To illustrate the
superior accuracy of the proposed DPD scheme, the spectrum
and adjacent channel leakage ratio (ACLR) results are compared
with those of the augmented Hammerstein predistorter. To com-
pensate for the memoryless nonlinearity, such as AM/AM and
AM/PM, the same weighted memoryless polynomial is used for
both the augmented and enhanced Hammerstein DPD schemes.

The ACLR comparison results shown in Fig. 11 indicate
that the enhanced Hammerstein predistorter can suppress the
memory effects of the PA more effectively than the augmented
Hammerstein scheme. Fig. 12 shows the ACLR performances
with respect to the computational complexity, i.e., FLOPs. The
enhanced Hammerstein predistorter provides improved ACLR
performances across the whole FLOPs regions, more than 2-dB

Fig. 13. Spectrum comparisons for WCDMA 4FA signal.

improvement. Table I summarizes the DPD linearization results
when each DPD algorithm provides the best result, and the
corresponding spectrums are depicted in Fig. 13. These experi-
mental results clearly show that the proposed DPD algorithm,
consisting of the weighted memoryless polynomial followed
by the Volterra filter, can far more effectively compensate for
both the static and dynamic nonlinearities of the PA than the
augmented Hammerstein predistorter with comparable compu-
tational complexity.

V. CONCLUSION

In this paper, an enhanced Hammerstein behavioral model
consisting of a weighted memoryless polynomial followed by a
Volterra filter has been employed to model and compensate for
the distortion of PAs exhibiting the memory effect. By adopting
the Volterra series as a dynamic subsystem, both linear and
nonlinear memory effects can be predicted well. The cross-term
of the Volterra structure improves the modeling performances.
The proposed behavioral model is compared with others, such
as the classical Hammerstein, augmented Hammerstein, and
Volterra series, in terms of the NMSE and ACEPR with respect
to the computational complexity. The results of the modeling
assessment clearly show that the enhanced Hammerstein be-
havior model outperforms the conventional and augmented
Hammerstein architectures. Compared with the Volterra series,
the proposed model can deliver the comparable performance
with lower complexity. The proposed structure is applied to the
DPD linearization, and the excellent linearization performance
is demonstrated for the four-carrier WCDMA signal.
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